
Task and Path Planning for Multi-Agent Pickup and Delivery

Minghua Liu
Tsinghua University

liumh413@gmail.com

Hang Ma, Jiaoyang Li, Sven Koenig
University of Southern California

(hangma,jiaoyanl,skoenig)@usc.edu

ABSTRACT

We study the offline Multi-Agent Pickup-and-Delivery (MAPD) problem,

where a team of agents has to execute a batch of tasks with release times

in a known environment. To execute a task, an agent has to move first

from its current location to the pickup location of the task and then to

the delivery location of the task. The MAPD problem is to assign tasks to

agents and plan collision-free paths for them to execute their tasks. Online

MAPD algorithms can be applied to the offline MAPD problem, but do

not utilize all of the available information and may thus not be effective.

Therefore, we present two novel offline MAPD algorithms that improve

a state-of-the-art online MAPD algorithm with respect to task planning,

path planning, and deadlock avoidance for the offline MAPD problem. Our

MAPD algorithms first compute one task sequence for each agent by solving

a special traveling salesman problem and then plan paths according to these

task sequences. We also introduce an effective deadlock avoidance method,

called “reserving dummy paths.” Theoretically, our MAPD algorithms are

complete for well-formed MAPD instances, a realistic subclass of all MAPD

instances. Experimentally, they produce solutions of smaller makespans and

scale better than the online MAPD algorithm in simulated warehouses with

hundreds of robots and thousands of tasks.

KEYWORDS

agent coordination; multi-agent path finding; path planning; pickup

and delivery task; task assignment; traveling salesman problem

ACM Reference Format:

Minghua Liu and Hang Ma, Jiaoyang Li, Sven Koenig. 2019. Task and

Path Planning for Multi-Agent Pickup and Delivery. In Proc. of the 18th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION AND BACKGROUND

In many real-world applications of multi-agent systems, agents have

to operate in a common environment, continuously attend to new

tasks one by one, and plan collision-free paths to execute the tasks.

Examples include autonomous aircraft-towing vehicles [17], office

robots [28], video game characters [15], robot teams that have to

change formations [9], and robots for automated warehouses [31]

that have to move inventory pods from their storage locations to

inventory stations or other locations. This problem is called the Multi-

Agent Pickup-and-Delivery (MAPD) problem [13], where a team of

agents has to execute a batch of tasks in a known environment. Each

task is characterized by a pickup location, a delivery location, and a

release time. To execute a task, the agent has to move first from its

The research at the University of Southern California was supported by the National

Science Foundation (NSF) under grant numbers 1409987, 1724392, 1817189, and

1837779 as well as a gift from Amazon. Minghua Liu performed his research while

being an undergraduate exchange student at the University of Southern California as

part of the USC Viterbi/Tsinghua Summer Research Program. We would like to thank

Eli Boyarski for helpful comments and Zecong Hu for editorial help.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May

13–17, 2019, Montreal, Canada. © 2019 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

current location to the pickup location of the task (it has to be at the

pickup location at or after the release time of the task) and then to

the delivery location of the task, without colliding with other agents.

Multiple tasks can be assigned to each agent.

Ma et al. [13] studied the online version of the MAPD problem,

where each task becomes known only after its release time. However,

the tasks and their release times are often known a priori. For

example, packages in automated warehouses might be prepared

at specific times that are known a priori, and a robot can pick up a

package only after its preparation. Similarly, the takeoff and landing

times of aircraft might be known a priori for autonomous aircraft

towing. We therefore study the offline version of the MAPD problem,

where all tasks and their release times are known a priori. Online

MAPD algorithms can be applied to the offline MAPD problem but

then do not utilize all available information and may thus not be

effective. We therefore present two novel offline MAPD algorithms

that improve a state-of-the-art online MAPD algorithm by using

more information (and in other ways) and evaluate them with respect

to makespan (for effectiveness) and runtime (for efficiency).

1.1 Related Work

The MAPD problem is related to the generalized target assignment

and path finding problem, that Nguyen et al. [18] solve with

answer set programming. They propose an approach for a simplified

warehouse variant (where the number of tasks is no larger than

the number of agents) that operates in three phases, which leads to

unnecessary waiting of agents between phases, and scales only to

20 agents or tasks.

The task-assignment aspect of the MAPD problem is related

to multi-robot task-allocation problems, which have been widely

studied, see Nunes et al. [19] for a survey. Most closely related are

the traveling salesman problem (TSP), the vehicle routing problem,

and their constrained versions [1, 20, 24, 32]. Their pickup and

delivery versions have also received attention. Calvo and Colorni [3]

propose a heuristic algorithm for the dial-a-ride problem, where a

fleet of vehicles without fixed routes and schedules transports people

from their pickup locations to their delivery locations, with the

objective of maximizing the number of people served. Das et al. [4]

propose an approximation algorithm for the multi-vehicle minimum

latency problem with point-to-point requests, with the objective of

minimizing the total latency while serving all requests. However,

none of these problems are a perfect match for the task-assignment

aspect of the MAPD problem.

The path-planning aspect of the MAPD problem is related to the

Multi-Agent Path Finding (MAPF) and Anonymous Multi-Agent

Path Finding (AMAPF) problems. The MAPF problem is to plan

collision-free paths for agents from given start locations to given

goal locations in a known environment. The MAPF problem is NP-

hard to solve optimally with regard to some objectives [14, 35] and

sometimes even NP-hard to approximate within given factors [14].

It can be solved with dedicated MAPF algorithms [7, 10, 21–

23, 25, 29, 30] or reductions to other well-studied combinatorial

problems [5, 26, 34], see [6, 12] for a survey. The AMAPF problem

is a version of the MAPF problem where “anonymous” agents can

swap their goal locations. The AMAPF problem is thus to plan a

one-to-one assignment of agents to goal locations and collision-free

paths for the agents from given start locations to their assigned goal

locations in a known environment. The AMAPF problem can be

solved in polynomial time using max-flow algorithms [11, 33] or

graph-theoretic algorithms [16]. We explain later how a MAPD

instance (where each agent has to visit multiple locations instead of

a single goal location) can be divided into several MAPF/AMAPF

instances.

1.2 Contributions

We present two offline MAPD algorithms, called Task Assignment

and Prioritized path planning (TA-Prioritized) and Task Assignment

and Hybrid path planning (TA-Hybrid). Both MAPD algorithms

first assign the tasks to agents. They compute one task sequence for

each agent by solving a special TSP, which ignores collisions and

thus uses estimated travel times between locations. Its purpose is

to minimize the makespan according to the estimated travel times.

Both MAPD algorithms then plan collisions-free paths for the agents

that visit pickup and delivery locations in the order of the tasks

in their task sequences, while keeping the makespan according

to the actual travel times small. Both MAPD algorithms use the

same task-planning method. They also use the same deadlock-

avoidance method during path planning, called “reserving dummy

paths,” which guarantees their completeness. (A dummy path of an

agent is a path with minimal travel time to the parking location of

the agent.) They differ in their path-planning methods and thus in

their efficiency-effectiveness trade-offs.

Ma et al. [13] present three online MAPD algorithms that can also

be applied to the offline MAPD problem. CENTRAL is the most

effective one. It iteratively assigns tasks to agents with the Hungarian

algorithm in the outer loop and then plans their paths by solving

MAPF instances with Conflict-Based Search (CBS) [21] in the inner

loop. Our MAPD algorithms improve CENTRAL with respect to

task planning, path planning, and deadlock avoidance for the offline

MAPD problem. They produce solutions of smaller makespans and

scale better than CENTRAL in simulated warehouses with hundreds

of robots and thousands of tasks.

2 PROBLEM DEFINITION

A MAPD problem consists of a set of M agents A = {a1, . . . ,aM }, a

set of N tasks T = {t1, · · · , tN }, and an undirected connected graph

G = (V ,E) whose vertices V correspond to locations and whose

edges E correspond to connections between the locations that the

agents can move along. Each task tj ∈ T is characterized by a pickup

location sj ∈ V , a delivery location дj ∈ V , and a non-negative

integer release time r j . Each agent ai has a unique parking location

pi ∈ V assigned to it and starts in it at time step 0. At each discrete

time step, the agent either executes a wait action to stay in its current

location or a move action to move to an adjacent location. Agents

have to avoid collisions with other agents: (a) Two agents cannot be

in the same location at the same time step (vertex collision), and (b)

two agents cannot move along the same edge in opposite directions

at the same time step (edge collision). An agent that is not executing

a task is called a free agent and can be assigned any unassigned task

tj . To execute its task, the agent has to move from its current location

via pickup location sj to delivery location дj without colliding with

other agents. It has to be at the pickup location at or after the release

time r j . It then starts to execute its task and is called a task agent.

When it reaches the delivery location, it finishes to execute its task

and is called a free agent again. The objective of the MAPD problem

is to minimize the makespan, that is, the earliest time step when all

tasks have been executed.

The pickup and delivery locations of tasks are called task

endpoints, and the parking locations of agents are called non-task

endpoints. Although not every MAPD instance is solvable, well-

formed MAPD instances are always solvable [13]. A MAPD instance

is well-formed iff (a) the number of tasks is finite, (b) the parking

location of each agent is different from all task endpoints, and (c)

there exists a path between any two endpoints that traverses no

endpoints. In well-formed MAPD instances, agents can always stay

in their parking locations for as long as necessary to avoid collisions

with other agents. Well-formed MAPD instances are a realistic

subclass of all MAPD instances since many real-world MAPD

instances are well-formed, including for automated warehouses.

3 TASK ASSIGNMENT

The task-assignment part, shared by both of our MAPD algorithms,

computes one task sequence for each agent. The task sequence of

agent ai specifies which tasks are assigned to the agent and in which

order the agent should execute them. The execution timeMi of the

task sequence is the number of time steps required for the agent

to execute all tasks in the task sequence in the given order. Even

though task assignment ignores collisions and the agent thus does

not have to wait to avoid collisions with other agents, the execution

time can be different from its travel distance since it might have

to wait for the release times of tasks. The primary objective of our

MAPD algorithms is to minimize the makespan max(Mi), which is

the largest execution time of all task sequences. Their secondary (tie-

breaking) objective is to minimize the sum of the execution times

of all task sequences
∑
Mi . Our MAPD algorithms first construct a

directed weighted graph for a MAPD instance using a similar idea

as in [20, 32]. They then solve a special TSP on it to compute good

task sequences for these objectives.

3.1 Constructing the Graph

Our MAPD algorithms first construct a directed weighted graph
G ′ = (V ′,E ′) with V ′ = A ∪ T , where vertex αi ∈ A represents
agent ai and vertex τi ∈ T represents task ti . There are four types
of edges (u,v) ∈ E ′, each of which has an integer weight w (u,v):

w (u, v) =





max(dist (pi , sj), r j) u = αi , v = τj

dist (si , дi) + dist (дi , sj) u = τi , v = τj

dist (si , дi) u = τi , v = α j

0 u = αi , v = α j ,

where dist (u,v) is the distance from u to v in G. The first row

computes the edge weight from αi to τj as the travel time of agent

ai from its parking location pi to the pickup location sj of its first

task tj plus, if needed, the wait time of the agent for the release time

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

α1

α2

α3

a1 : [t5 t1 t4]

a2 : [t6 t2 t9]

a3 : [t3 t8 t7]

Figure 1: Left: A Hamiltonian cycle, which contains three agent ver-

tices and nine task vertices. Right: The corresponding task sequences

for the agents.

r j of the task. The second row computes the edge weight from τi to

τj as the travel time of the agent from the pickup location si of task

ti via the delivery location дi of the same task to the pickup location

sj of its next task tj . The third row computes the edge weight from

τi to α j as the travel time of the agent from the pickup location si
of its last task to the delivery location дi of the same task. Finally,

the fourth row computes the edge weight from αi to α j as zero since

agent ai is assigned no tasks and thus incurs no travel time.

Since G ′ is a complete graph, it contains Hamiltonian cycles.

Since a Hamiltonian cycle visits each agent vertex exactly once,

it can be partitioned into M parts, where each part consists of an

agent vertex, a sequence of task vertices, and another agent vertex

(in this order). Since a Hamiltonian cycle also visits each task vertex

exactly once, the M parts can be converted to M task sequences, one

for each agent. Figure 1 shows an example. The sum of the edge

weights of each part is a lower bound on the execution time of the

corresponding task sequence since the edge weights do not model

the release times of the tasks except for the first task of each task

sequence.

3.2 Solving a Special TSP

Our MAPD algorithms use the LKH-3 TSP solver [8] to plan a good

Hamiltonian cycle on G ′ for their objectives given earlier. The TSP

solver is able to solve a variety of constrained TSPs and vehicle

routing problems by transforming them to the standard symmetric

TSP and handling their constraints with penalty functions. We let

the TSP solver compute the execution time of each task sequence

during each of its iterations so that it can take the release times

of all tasks in the task sequence into account. Consider the task

sequence [ti1 , ti2 , . . . , tili] of agent ai and the time step start (tik)

when the agent starts to execute task tik . For the first task ti1 , we

have start (ti1) = w (αi ,τi1) since the edge weights of G ′ take the

release time of the first task into account. For the following tasks

tik , we have start (tik) = max(start (tik−1) +w (τik−1 ,τik), rik) for all

k = 2, . . . , li since the edge weights of G ′ do not take the release

times of these tasks into account. The execution timeMi of the task

sequence is start (tili) +w (τili ,αi+1), where αi+1 is the next agent

vertex in the Hamiltonian cycle. The TSP solver appears to plan

good task sequences even though it has to solve a non-Euclidean

Hamiltonian cycle problem for uncommon objectives.

4 PRIORITIZED PATH PLANNING

The path-planning part of TA-Prioritized uses an improved version of

prioritized planning [27] to plan collision-free paths for the agents to

execute all of their tasks according to their task sequences. Van den

stimestep = 0

timestep = 2

timestep = 1

g

g

g

s

s

Figure 2: Paths for three agents. Although another agent can move

from location s to location д at time step 0, it cannot stay in location д

or move to other locations afterward.

Berg and Overmars [27] solve the MAPD problem by planning

paths for the agents, one by one, in decreasing order of the estimated

execution times of their task sequences, that is, giving priority to

agents with larger estimated execution times. After a path has been

planned for an agent, the paths of all remaining agents are not

allowed to collide with it. This way, agents with larger estimated

execution times have fewer constraints, which may result in a smaller

makespan. This technique has already chosen the next agent based

on the estimated execution times before it plans a path for an agent.

TA-Prioritized improves on this technique by choosing the next agent

only after it has planned a path for an agent. This way, it can choose

the next agent based on the actual execution times (that take the

paths of the previous agents into account). For each remaining agent,

it tentatively assumes that it chooses this agent next and plans a path

for it. It then chooses the agent next whose path has the the largest

execution time, and the procedure repeats. TA-Prioritized obtains

collision-free paths for all agents after M iterations, during each of

which it plans paths for at most M remaining agents.

The path of an agent is a concatenation of several sub-paths

according to its task sequence, namely, from its start location to the

pickup location of its first task, to the delivery location of its first

task, to the pickup location of its second task, and so on, ending at

the delivery location of its last task. TA-Prioritized constructs the

path sub-path by sub-path, where a sub-path moves the agent from

its current location to its goal location, which is either the pickup

location of a task at or after its release time or the delivery location

of a task. All sub-paths have to avoid collisions with the paths of

all previous agents and cannot contain the parking locations of all

remaining agents. They can be found via an A* search for a shortest

path in the space of location-time pairs (x , t). TA-Prioritized plans

them without backtracking to achieve efficiency, which is nontrivial

since there might not exist a collision-free sub-path for an agent

from its current location to its goal location. Figure 2 shows an

example where TA-Prioritized would have to backtrack to plan a

different sub-path or risk being incomplete. TA-Prioritized addresses

this issue by using “reserving dummy paths” as deadlock-avoidance

method.

TA-Prioritized implements “reserving dummy paths” by changing

the goal-test function of the A* search for each sub-path: An A*

node (x , t) is a goal node iff (1) location x is the goal location of

the agent, (2) time step t is at or after the release time of the task if

the goal location is the pickup location of the task, and (3) the A*

search is able to plan a “dummy path” from location x at time step t

to the parking location of the agent. This dummy path has to “hold”

the parking location (that is, allow the agent to stay there forever),

avoid collisions with the paths of all previous agents (and their final

dummy paths, see below), and cannot contain the parking locations

of all remaining agents. If the goal test fails, then the A* search

continues. An agent never moves along its dummy path, except for

its last one (the “final” dummy path), that moves it from the delivery

location of its last task to its parking locations and holds it, since the

purpose of a dummy path is only to guarantee that the subsequent

sub-path for the agent (and its dummy path), that replace this dummy

path, exists. All sub-paths also have to avoid collisions with the final

dummy paths of all previous agents. The objective of TA-Prioritized

is to minimize the makespan by minimizing the execution time of

each sub-path (without its final dummy path).

Whenever TA-Prioritized plans a sub-path for an agent (and its

dummy path) for well-formed MAPD instances, it is guaranteed

to find collision-free ones (and is thus complete) since they exist,

which can be proved by induction. Each agent starts in its parking

location. Assume that the agent is in its parking location. It can stay

there until all previous agents have moved along their paths (and

their final dummy paths) to their parking locations. Then, it can first

move to its goal location, then move back to its parking location,

and finally stay there for as many time steps as needed. This path

does not collide with the paths of the previous agents because it

avoids the parking locations of the previous agents and their paths

avoid its parking location. Such a collision-free path exists since

the MAPD instance is well-formed, which implies that paths can

avoid all parking locations. This proof continuous to work (and TA-

Prioritized is thus still complete) if the definition of a well-formed

MAPD problem is changed to require only that there exists a path

between any two endpoints that traverses no parking locations rather

than no endpoints.

Completeness cannot only be guaranteed by “reserving dummy

paths” but also by “holding the goal location” [13]. However, this

existing deadlock-avoidance method can result in sub-paths with

large execution times in case the paths of some previous agents pass

through the goal location of an agent. This is so because the agent

then has to wait until the other agents have passed through its goal

location before it can move to it and stay there for as many time

steps as needed.

5 HYBRID PATH PLANNING

TA-Hybrid is similar to TA-Prioritized but uses a different path-

planning method to achieve a different efficiency-effectiveness trade-

off. The path-planning part of TA-Hybrid uses MAPF-based path

planning to plan the paths of the new task agents and AMAPF-based

path planning to plan the paths of the free agents. We first give

overviews of TA-Hybrid in Section 5.1, path planning for the new

task agents in Section 5.2, and path planning for the free agents

in Section 5.3. Then, we describe in detail in Section 5.4 how the

min-cost max-flow algorithm is used for path planning for the free

agents.

5.1 Framework

TA-Hybrid considers two groups of agents for path planning and

uses a different path-planning method for each group:

• Group 1: New task agents. TA-Hybrid plans sub-paths for

them from their current locations to the delivery locations of

their current tasks. The agents cannot swap their delivery

locations. TA-Hybrid thus uses Improved Conflict-Based

Search (ICBS) [2], a recent version of CBS, to perform

Algorithm 1: TA-Hybrid

Input: G , agents (= A), and tasks (= T).

Output: none.

1 timestep ← 0 ;

2 sequences ← TASKASSIGNMENT(G , agents, tasks) ;

3 while not all tasks have been executed do

4 for i = 1, . . . , M do

5 if sequences[i].size() > 0 then

6 task ← sequences[i].front();

7 if agents[i].location = task.delivery_location then

8 sequences[i].delete(task);

9 PLANPATHSTODELIVERY(G , agents, sequences, timestep);

10 if the set of free agents has changed or timestep = 0 then

11 PLANPATHSTOPICKUP(G , agents, sequences, timestep);

12 Move all agents for one time step ;

13 timestep ← timestep + 1;

MAPF-based path planning for them. The resulting paths

remain unchanged until the new task agents reach their

delivery locations since TA-Hybrid plans paths only for new

task agents but not the other task agents.

• Group 2: Free agents. TA-Hybrid plans sub-paths for them

from their current locations to the pickup locations of the next

tasks in their task sequences. It may have planned such paths

for them before. However, the paths can be improved while

the agents follow them, for example, by the agents swapping

their pickup locations. TA-Hybrid thus uses a polynomial-

time min-cost max-flow algorithm to perform AMAPF-based

path planning for them at every time step where the set of

free agents has changed.

Algorithm 1 shows the pseudo-code of TA-Hybrid. It first calls

Procedure TASKASSIGNMENT to compute the task sequences of all

agents (Line 2). At each time step, it checks whether one or more

task agents have arrived at the delivery locations of their current

tasks (Line 7). If so, then it turns each such agent into a free agent

and removes the task from its task sequence (Line 8). This way, the

first task in the task sequence of each agent is always its current

task. Then, TA-Hybrid calls Procedure PLANPATHSTODELIVERY

to perform MAPF-based path planning for all agents in Group

1 (Line 9). Afterward, if the set of free agents has changed or

it is the first time step (Line 10), TA-Hybrid calls Procedure

PLANPATHSTOPICKUP to perform AMAPF-based path planning

for all agents in Group 2 (Line 11). Finally, all agents move for one

time step (Line 12), the current time step is incremented (Line 13),

and the procedure repeats until all tasks have been executed (Line

3).

TA-Hybrid uses “reserving dummy paths” for both Procedures

PLANPATHSTODELIVERY and PLANPATHSTOPICKUP to guaran-

tee completeness. Like for TA-Prioritized, the agents never move

along their dummy paths, except for the final one of each agent,

since the purpose of a dummy path is only to guarantee that the

subsequent sub-path for the agent (and its dummy path) for the

agent, that replace this dummy path, exists. Unlike for TA-Prioritized,

all dummy paths are stored since collisions with them have to be

avoided, for the following reason: After TA-Prioritzed has planned a

(non-final) dummy path for an agent, it immediately plans the next

sub-path for the agent (and its dummy path), that replace this dummy

Algorithm 2: PLANPATHSTODELIVERY

Input: G , agents (= A), their (task) sequences, and the current timestep.

Output: agent.path for all agents agent in group1.

1 group1← ∅;

2 for i = 1, . . . , M do

3 if sequences[i].size() > 0 then

4 task ← sequences[i].front() ;

5 if timestep ≥ task.release_time and not task.executing then

6 if agents[i].location= task.pickup_location then

7 group1.append(agents[i]);

8 if group1.size() > 0 then

9 constraints ← {agent.path | agent < group1};

10 ICBS(G , group1, constraints, timestep);

path, and thus does not have to avoid collisions with this dummy

path. On the other hand, after TA-Hybrid has planned the dummy

path for an agent, it does not immediately replace it and thus has to

avoid collisions with it.

Whenever TA-Hybrid plans a sub-path for an agent (and its

dummy path) for well-formed MAPD instances, it is guaranteed

to find collision-free ones (and is thus complete) since they exist,

as we show separately for Groups 1 and 2 in the following. This

proof continues to work (and TA-Hybrid is thus still complete) if the

definition of a well-formed MAPD problem is changed to require

only that there exists a path between any two endpoints that traverses

no pickup and parking locations rather than no endpoints.

5.2 Group 1: Paths to Delivery Locations

Algorithm 2 shows the pseudo-code of Procedure PLANPATHSTO-

DELIVERY for all agents in Group 1. TA-Hybrid checks whether one

or more free agents are at the pickup locations of their current tasks

at or after their release times and are not executing them yet (Lines

5-6). If so, then each such agent turns into a task agent and is part of

Group 1 (Line 7). Then, TA-Hybrid uses MAPF-based path planning

with ICBS to plan the next sub-paths for all agents in Group 1 (and

their dummy paths) simultaneously (Line 10). These sub-paths (and

their dummy paths) have to avoid collisions with the sub-paths of

all agents not in Group 1 (and their dummy paths) (Line 9). The

objective of ICBS is to minimize the makespan by using, for each

sub-path, the sum of the execution time of the sub-path (without its

dummy path) and the estimated execution time for the remaining

tasks in the task sequence (as provided by the task-assignment part).

TA-Hybrid implements “reserving dummy paths” by changing

the A* search on the low-level of ICBS so that it plans a sub-path

from the current location of an agent to its delivery location and a

dummy path from there to its parking location. The dummy path

has to hold the parking location. Both paths have to avoid collisions

with the sub-paths of all agents not in Group 1 (and their dummy

paths), in addition to the collisions already avoided by the standard

A* search on the low-level of ICBS.

Whenever Procedure PLANPATHSTODELIVERY plans sub-paths

for all agents in Group 1 (and their dummy paths), it is guaranteed to

find collision-free ones since they exist. All agents can move along

their sub-paths (and their dummy paths) to their parking locations.

Then, all agents in Group 1, one by one, can first move to their

delivery locations, then move back to their parking locations, and

Algorithm 3: PLANPATHSTOPICKUP

Input: G , agents (= A), their (task) sequences, and the current timestep.

Output: agent.path for all agents agent in group2 and their (task) sequences.

1 group2 ← ∅ ;

2 for i = 1, . . . , M do

3 if sequences[i].size() > 0 then

4 task ← sequences[i].front();

5 if not task.executing then

6 group2.append(agents[i]);

7 if group2.size() > 0 then

8 Partition group2 into subgroups;

9 for each subgroup do

10 constraints ← {agent.path | agent < subgroup };

11 MINCOSTMAXFLOW(G , subgroup, constraints, timestep);

12 DUMMYPATHPLANNING(G , subgroup, constraints, timestep);

finally stay there for as many time steps as needed. Such collision-

free paths exist for the same reason as for TA-Prioritized.

5.3 Group 2: Paths to Pickup Locations

Algorithm 3 shows the pseudo-code of Procedure PLANPATHSTO-

PICKUP for all agents in Group 2. TA-Hybrid checks whether one

or more agents do not yet execute their current tasks (Lines 5). If

so, then each such agent is a free agent and part of Group 2 (Line

6). Then, TA-Hybrid could use ICBS to perform MAPF-based path

planning in order to plan the next sub-paths for all agents in Group

2 (and their dummy paths). However, it uses a min-cost max-flow

algorithm for AMAPF-based path planning instead because it is

faster and can improve the task sequences and thus the resulting

makespan - but it can plan only for subsets of agents in Group 2

simultaneously whose current pickup locations are pairwise different

and can plan their sub-paths only to their current pickup locations.

Each such sub-path has to hold its pickup location to guarantee

that the subsequent dummy path for the agent, that replaces holding

the pickup location, exists. TA-Hybrid plans dummy paths for the

agents from their assigned pickup locations to their parking locations

afterward.

First, TA-Hybrid partitions the agents in Group 2 into subgroups

so that agents whose current tasks have the same pickup location

are in different subgroups (Line 8). It assigns integers to all agents

with the same pickup locations, starting with 1, and then puts agents

with the same integer into the same subgroup. Second, for each

subgroup, TA-Hybrid uses a min-cost max-flow algorithm to plan a

one-to-one mapping from the agents in the subgroup to the current

pickup locations of these agents as well as collision-free sub-paths

for them that arrive at the pickup locations after the release times

of their tasks (Line 11). These sub-paths have to hold their pickup

locations and avoid collisions with the sub-paths of all agents not

in the subgroup (and their dummy paths) (Line 10). If an agent

is assigned the current pickup location of a different agent, TA-

Hybrid replaces its current task sequence with the task sequence

of this different agent, which can improve the resulting makespan.

The objective of the min-cost max-flow algorithm is to minimize

the makespan, taking into account the release times of the current

tasks of the agents as well as the time steps when agents have to

start executing them to minimize the makespan according to the

estimated execution times of their task sequences once the first tasks

in the task sequences have started to get executed (as provided by

the task-assignment part). Third, TA-Hybrid uses an A* search to

plan for each agent in the subgroup, one by one, a dummy path from

its assigned pickup location to its parking location (Line 12). Each

dummy path has to hold the parking location and avoid collisions

with the sub-paths of all other agents (and their dummy paths if they

have been planned already).

Whenever Procedure PLANPATHSTOPICKUP plans sub-paths for

all agents in Group 2 (and their dummy paths), it is guaranteed to

find collision-free ones since they exist. All agents can move along

their sub-paths (and their dummy paths) to their parking locations.

Then, all agents in a subgroup of Group 2, one by one, can move to

their assigned pickup locations and stay there for as many time steps

as needed. Then, all agents in the subgroup, one by one, can move

to their parking locations and stay there for as many time steps as

needed. Such collision-free paths exist since the MAPD instance is

well-formed and the assigned pickup locations are pairwise different,

which implies that paths can avoid all parking and pickup locations.

5.4 Min-Cost Max-Flow for AMAPF Instances

We now provide details on Procedure MINCOSTMAXFLOW. Let

A′ ⊆ A be the agents in a subgroup of Group 2, T ′ ⊆ T be the

first tasks in their task sequences, and t0 be the current time step.

Let L be a lower bound on the makespan of the AMAPF instance,

initially the maximum of the estimated execution times of the task

sequences of all agents in A′ (as provided by the task-assignment

part). Given makespan bound L, TA-Hybrid computes the deadline

Lj of each task tj ∈ T ′ as L minus the estimated execution time

of the task sequence that task tj belongs to once task tj starts to

get executed. Since the estimated execution time is actually a lower

bound on the execution time, a makespan of L can only be achieved

if each task tj ∈ T
′ starts to get executed at or before its deadline

Lj . TA-Hybrid constructs a time-extended directed flow network to

check whether this appears possible. It uses a min-cost max-flow

algorithm to plan a feasible integer flow of |A′ | units, the maximum

possible, with first priority and to minimize the sum-of-costs of the

flow with second priority. If the resulting flow is not of |A′ | units,

then TA-Hybrid increments the makespan bound, and the procedure

repeats. Otherwise, TA-Hybrid transforms the flow to sub-paths for

all agents in A′ from their (current) locations at time step t0 to the

pickup locations of all tasks in T ′. If these sub-paths have edge

collisions with each other, then TA-Hybrid re-assembles the paths

of the involved agents until all edge collisions have been resolved.

Afterwards, if an agent is assigned the current pickup location of a

different agent, TA-Hybrid replaces its current task sequence with

the task sequence of this different agent. We now provide details

on how TA-Hybrid constructs the flow network and transforms the

resulting flow to sub-paths for all agents in A′. Figure 3 shows an

example.

TA-Hybrid follows [11, 34] to construct the flow network N =

(V, E) from time step t0 to time step L = max(Lj). All edges have

unit capacity. Every location v ∈ V at time step t0 is represented

by a vertex voutt0
∈ V . Every location v ∈ V at every time step

t ∈ [t0 + 1,L] is represented by two vertices v int ∈ V and voutt ∈ V ,

which are connected with a zero-cost edge (v int ,v
out
t) ∈ E to prevent

source

sink

0 out

1 out

2 out

3 out

1 in

2 in

3 in

4 out

a b c d e f

4 inf

a

b c

d e

f

a

b c

d er1 = 3 r2 = 2

r3 = 3

L1 = 4 L2 = 3

L3 = 3

meta vertices

Figure 3: Example of constructing the flow network (right) for a 3-

agent AMAPF instance (left). The current locations of the three agents

are a, b , and c , and the pickup locations of the three tasks are d , e ,

and f . The release times and deadlines for all tasks are listed next to

their pickup locations. All edges have unit capacities. All solid edges

have unit costs, while all dotted edges have zero costs. A different agent

has sub-path (e, c, c, c, c), which results in all red edges being removed

from the flow network. The blue, green, and purple lines show the

feasible integer min-cost max-flow {(a, a, b, d), (b, d, e), (c, b, d, f) },

whose sum-of-costs is 8.

vertex collisions. (We explain below how to prevent edge collisions.)

A move action from location u to location v (corresponding to an

edge (u,v) ∈ E) at time step t is represented by a unit-cost edge

(uoutt ,v
in
t+1) ∈ E, and a wait action in location v at time step t is

represented by a unit-cost edge (voutt ,v
in
t+1) ∈ E. Constraints on

the movement of the agents in A′ result in the removal of some of

these edges. First, the agents have to hold the pickup locations sj
of tasks tj ∈ T

′. To achieve this, TA-Hybrid allows only one agent

to visit the pickup location sj of each such task tj after its release

time r j . The edges ((sj)
out
t ,u

in
t+1) for all edges (sj ,u) ∈ E and time

steps t = r j , . . . ,L − 1 are therefore removed. Second, the agents

have to avoid collisions with the sub-paths of agents not in A′ (and

their dummy paths). For each such path P = (pt0 ,pt0+1, . . .), the

edges ((pt)
in
t , (pt)

out
t) for all time steps t = t0, . . . ,L are removed

to avoid vertex collisions, and the edges ((pt+1)
out
t , (pt)

in
t+1) for all

time steps t = t0, . . . ,L − 1 are removed to avoid edge collisions.

The idea behind the design of the flow network is to plan a

feasible integer flow from the source vertex to the sink vertex

that corresponds to the sub-paths of all agents in A′. Thus, the

source vertex is connected with zero-cost edges to the vertices that

correspond to the locations of the agents in A′ at time step t0. The

start of the execution of each task tj ∈ T
′ in its pickup location sj is

represented by a “meta” vertex inV . The execution of the task has

to start between its release time sj and its deadline Lj but the pickup

location sj can only be held after the last time step r ′j when the

sub-path of any agent not in A′ passes through this location. Thus,

only the vertices (sj)
out
t for all time steps t = max(r j , r

′
j + 1), . . . ,Lj

are connected with zero-cost edges to the meta vertex of the task,

Table 1: MAPD Algorithms.

Offline? Task Assignment Path Planning (at each time step except for TA-Prioritized, that plans paths only once) Deadlock Avoidance

CENTRAL online next task only (Hungarian algorithm) MAPF-based (CBS) for two agent groups holding task endpoints

before path planning (1 for all free and 1 for all new task agents)

GREEDY1 offline next task only mix of MAPF-based (ICBS) for 1 agent group (for all new task agents) and holding task endpoints

accomplished during/by AMAPF-based path planning AMAPF-based (min-cost max-flow algorithm) for 1 agent group (for all free agents)

GREEDY2 offline next task only mix of MAPF-based (ICBS) for 1 agent group (for all new task agents) and reserving dummy paths

accomplished during/by AMAPF-based path planning AMAPF-based (min-cost max-flow algorithm) for 1 agent group (for all free agents)

TA-ICBS offline task sequence (TSP solver) MAPF-based (ICBS) for 1 agent group (for all agents) none necessary

before path planning

TA-Prioritized offline task sequence (TSP solver) MAPF-based (prioritized planning) for M agent groups (for 1 agent each) reserving dummy paths

before path planning

TA-Hybrid offline task sequence (TSP solver) mix of MAPF-based (ICBS) for 1 agent group (for all new task agents) and reserving dummy paths

before path planning but task sequences can AMAPF-based (min-cost max-flow algorithm) for several agent groups

be changed by AMAPF-based path planning (that form a partition of all free agents)

Table 2: Results in the small warehouse. “f ” stands for the task

frequency, “mkspn” for the makespan, and “time” for the runtime.

CENTRAL GREEDY1 GREEDY2 TA-ICBS TA-Prioritized TA-Hybrid TSP

f agents mkspn time mkspn time mkspn time mkspn time mkspn time mkspn time mkspn

1

10 1155 51 1132 95 1129 199 1079 33 1094 10 1087 13 1062

20 661 122 690 252 648 102 603 25 608 21 612 38 590

30 553 180 552 582 533 178 timeout 546 35 528 118 525

40 555 482 699 1347 525 336 timeout 534 44 525 182 525

50 553 945 584 2513 526 537 timeout 540 58 525 727 525

2

10 1129 59 1119 31 1090 180 1044 14 1056 10 1048 10 1028

20 613 190 618 58 594 86 552 152 569 20 561 23 534

30 449 214 455 97 419 44 timeout 394 29 385 38 369

40 366 346 401 147 347 63 timeout 328 39 323 94 308

50 335 423 369 232 303 88 timeout 327 44 300 130 300

5

10 1117 110 1120 17 1090 180 1039 15 1054 10 1039 10 1020

20 603 281 602 23 585 80 539 20 551 19 549 19 519

30 424 257 436 30 422 40 timeout 370 29 377 21 345

40 332 345 354 40 320 49 timeout 289 41 285 31 268

50 313 506 317 51 284 52 timeout 244 48 241 57 225

10

10 1130 64 1114 12 1080 174 1034 14 1036 10 1045 10 1017

20 589 131 594 15 592 75 525 253 559 19 541 17 512

30 422 221 424 20 402 42 361 453 369 19 373 21 343

40 344 356 338 25 336 42 timeout 294 40 279 29 261

50 301 1056 298 29 272 42 timeout 236 50 238 41 213

500

10 1101 50 1094 10 1088 174 1033 14 1045 10 1037 11 1016

20 580 124 591 13 580 63 timeout 535 19 539 14 508

30 421 720 429 17 408 28 timeout 370 29 362 21 338

40 357 976 337 20 314 35 timeout 275 39 280 22 254

50 timeout 283 21 266 283 timeout 235 50 231 28 211

average 600 342 598 228 566 127 538 30 532 69 513

Table 3: Results in the large warehouse.

GREEDY1 GREEDY2 TA-Prioritized TA-Hybrid TSP

agents mkspn time mkspn time mkspn time mkspn time mkspn

60 1044 173 1007 875 1045 507 991 500 847

90 803 323 746 450 721 789 699 637 576

120 650 372 598 476 578 1098 556 1091 455

150 764 1126 505 612 524 1317 479 1803 409

180 777 5053 452 608 475 1683 419 2457 368

average 808 1409 662 604 669 1079 629 1298 531

the other MAPD algorithms with their greedier task-assignment

methods. With regard to path planning, both TA-Prioritized and

TA-Hybrid, that use our faster path-planning methods, scale better

than CENTRAL and TA-ICBS with their slower path-planning

methods. With regard to deadlock avoidance, GREEDY2, that

uses “reserving dummy paths” as our deadlock-avoidance method,

typically produces solutions with smaller makespans than GREEDY1

with its existing “holding task endpoints” deadlock-avoidance

method. Both TA-Prioritized and TA-Hybrid combine all three

innovations but use different path-planning methods.

We now evaluate all MAPD algorithms with respect to makespan

and runtime: With regard to makespan, the TA algorithms produce

solutions with smaller makespans than the other MAPD algorithms

due to their better task-assignment method. TA-ICBS appears to the

best, followed by TA-Hybrid in the large warehouse. With regard

to runtime, the GREEDY algorithms, that use faster path-planning

methods, tend to run faster than CENTRAL with its slower path-

planning method. CENTRAL does not scale to the large warehouse.

The TA algorithms incur additional runtime over the other MAPD

algorithms for assigning a sequence of tasks to each agent instead of

only the next task, which requires solving a special TSP. However,

larger runtimes are justified for offline MAPD problems compared to

online ones, and faster TSP solvers that apply to our special TSP can

be used to reduce the runtimes. TA-Prioritized and TA-Hybrid, that

use faster path-planning methods, scale better than CENTRAL with

its slower path-planning method and even better than TA-ICBS with

its even slower path-planning method. TA-Prioritized and TA-Hybrid

produce solution of slightly larger makespans than TA-ICBS (even

though all of them use the same task-assignment method) since their

faster path-planning methods result in slightly longer paths.

7 CONCLUSION

In this paper, we studied the Multi-Agent Pickup-and-Delivery

(MAPD) problem and introduced two offline MAPD algorithms,

TA-Prioritized and TA-Hybrid, that improve on the existing online

MAPD algorithm CENTRAL for the offline MAPD problem. With

respect to task assignment, CENTRAL always greedily assigns only

the next task to an agent. Our MAPD algorithms, on the other hand,

compute one task sequence per agent by solving a special traveling

salesman problem. With respect to path planning, CENTRAL uses

slow MAPF-based path planning. Our MAPD algorithms, on the

other hand, use faster path planning to scale better and, in case of

TA-Hybrid, can even improve the task sequences. With respect to

deadlock avoidance, CENTRAL uses “holding task endpoints”. Our

MAPD algorithms, on the other hand, use “reserving dummy paths”.

Overall, they produce solutions of smaller makespans and scale

better than CENTRAL in simulated warehouses with hundreds of

robots and thousands of tasks. In the future, we may extend them

to more real-world scenarios. For example, they apply with minor

adaptations to the case where agents start at different time steps.

We may also consider agents with different velocities and tasks

with different deadlines. Finally, we may use their ideas to improve

MAPD algorithms for the online MAPD problem.

REFERENCES
[1] T. Bektas. 2006. The Multiple Traveling Salesman Problem: an Overview of

Formulations and Solution Procedures. Omega 34, 3 (2006), 209–219.

[2] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and S. E.

Shimony. 2015. ICBS: Improved Conflict-Based Search Algorithm for Multi-

Agent Pathfinding. In IJCAI. 740–746.

[3] R. W. Calvo and A. Colorni. 2007. An Effective and Fast Heuristic for the

Dial-a-Ride Problem. 4OR 5, 1 (2007), 61–73.

[4] A. Das, S. Gollapudi, A. Kim, D. Panigrahi, and C. Swamy. 2018. Minimizing

Latency in Online Ride and Delivery Services. In WWW. 379–388.

[5] E. Erdem, D. G. Kisa, U. Oztok, and P. Schueller. 2013. A General Formal

Framework for Pathfinding Problems with Multiple Agents. In AAAI. 290–296.

[6] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N. R.

Sturtevant, G. Wagner, and P. Surynek. 2017. Search-Based Optimal Solvers for

the Multi-Agent Pathfinding Problem: Summary and Challenges. In SoCS. 29–37.

[7] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. R. Sturtevant, R. C. Holte,

and J. Schaeffer. 2014. Enhanced Partial Expansion A*. Journal of Artificial

Intelligence Research 50 (2014), 141–187.

[8] K. Helsgaun. 2017. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for

Constrained Traveling Salesman and Vehicle Routing Problems. Technical Report.

Roskilde University.

[9] W. Hönig, T. K. S. Kumar, H. Ma, N. Ayanian, and S. Koenig. 2016. Formation

Change for Robot Groups in Occluded Environments. In IROS. 4836–4842.

[10] R. Luna and K. E. Bekris. 2011. Push and Swap: Fast Cooperative Path-Finding

with Completeness Guarantees. In IJCAI. 294–300.

[11] H. Ma and S. Koenig. 2016. Optimal Target Assignment and Path Finding for

Teams of Agents. In AAMAS. 1144–1152.

[12] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. K. S. Kumar, T. Uras, H.

Xu, C. Tovey, and G. Sharon. 2016. Overview: Generalizations of Multi-Agent

Path Finding to Real-World Scenarios. In IJCAI-16 Workshop on Multi-Agent Path

Finding.

[13] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig. 2017. Lifelong Multi-Agent Path

Finding for Online Pickup and Delivery Tasks. In AAMAS. 837–845.

[14] H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig. 2016. Multi-Agent

Path Finding with Payload Transfers and the Package-Exchange Robot-Routing

Problem. In AAAI. 3166–3173.

[15] H. Ma, J. Yang, L. Cohen, T. K. S. Kumar, and S. Koenig. 2017. Feasibility Study:

Moving Non-Homogeneous Teams in Congested Video Game Environments. In

AIIDE. 270–272.

[16] P. MacAlpine, E. Price, and P. Stone. 2014. SCRAM: Scalable Collision-Avoiding

Role Assignment with Minimal-Makespan for Formational Positioning. In AAMAS.

1463–1464.

[17] R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma, S. Kumar, and S. Koenig.

2016. Planning, Scheduling and Monitoring for Airport Surface Operations. In

AAAI-16 Workshop on Planning for Hybrid Systems.

[18] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh. 2017. Generalized

Target Assignment and Path Finding using Answer Set Programming. In IJCAI.

1216–1223.

[19] E. Nunes, M. Manner, H. Mitiche, and M. Gini. 2017. A Taxonomy for Task

Allocation Problems with Temporal and Ordering Constraints. Robotics and

Autonomous Systems 90 (2017), 55–70.

[20] E. Osaba, F. Diaz, E. Onieva, P. López-García, R. Carballedo, and A. Perallos.

2015. A Parallel Meta-Heuristic for Solving a Multiple Asymmetric Traveling

Salesman Problem with Simulateneous Pickup and Delivery Modeling Demand

Responsive Transport Problems. In International Conference on Hybrid Artificial

Intelligence Systems. Springer, 557–567.

[21] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. 2015. Conflict-Based Search

for Optimal Multi-Agent Pathfinding. Artificial Intelligence 219 (2015), 40–66.

[22] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. 2013. The Increasing Cost

Tree Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 195

(2013), 470–495.

[23] T. S. Standley. 2010. Finding Optimal Solutions to Cooperative Pathfinding

Problems. In AAAI. 173–178.

[24] A. Stentz, M B. Dias, R. M. Zlot, and N. Kalra. 2004. Market-Based Approaches

for Coordination of Multi-Robot Teams at Different Granularities of Interaction.

In International Conference on Robotics and Remote Systems for Hazardous

Environments.

[25] N. R. Sturtevant and M. Buro. 2006. Improving Collaborative Pathfinding Using

Map Abstraction. In AIIDE. 80–85.

[26] P. Surynek. 2015. Reduced Time-Expansion Graphs and Goal Decomposition for

Solving Cooperative Path Finding Sub-Optimally. In IJCAI. 1916–1922.

[27] J. P. Van den Berg and M. H. Overmars. 2005. Prioritized Motion Planning for

Multiple Robots. In IROS. 430–435.

[28] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal. 2015. CoBots: Robust Symbiotic

Autonomous Mobile Service Robots. In IJCAI. 4423–4429.

[29] G. Wagner and H. Choset. 2015. Subdimensional Expansion for Multirobot Path

Planning. Artificial Intelligence 219 (2015), 1–24.
[30] K. Wang and A. Botea. 2011. MAPP: A Scalable Multi-Agent Path Planning

Algorithm with Tractability and Completeness Guarantees. Journal of Artificial

Intelligence Research 42 (2011), 55–90.

[31] P. R. Wurman, R. D’Andrea, and M. Mountz. 2008. Coordinating Hundreds of

Cooperative, Autonomous Vehicles in Warehouses. AI Magazine 29, 1 (2008),

9–20.

[32] S. Yoon and J. Kim. 2017. Efficient Multi-Agent Task Allocation for Collaborative

Route Planning with Multiple Unmanned Vehicles. IFAC-PapersOnLine 50, 1

(2017), 3580–3585.

[33] J. Yu and S. M. LaValle. 2013. Multi-Agent Path Planning and Network Flow. In

WAFR, E. Frazzoli, T. Lozano-Perez, N. Roy, and D. Rus (Eds.). Vol. 86. Springer,

157–173.

[34] J. Yu and S. M. LaValle. 2013. Planning Optimal Paths for Multiple Robots on

Graphs. In ICRA. 3612–3617.

[35] J. Yu and S. M. LaValle. 2013. Structure and Intractability of Optimal Multi-Robot

Path Planning on Graphs. In AAAI. 1444–1449.

